The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2011.021009
PDF

Automatic Classification and Segmentation of Brain Tumor in CT Images using Optimal Dominant Gray level Run length Texture Features

Author 1: A PADMA
Author 2: R.Sukanesh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 2 Issue 10, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Tumor classification and segmentation from brain computed tomography image data is an important but time consuming task performed manually by medical experts. Automating this process is challenging due to the high diversity in appearance of tumor tissue among different patients and in many cases, similarity between tumor and normal tissue. This paper deals with an efficient segmentation algorithm for extracting the brain tumors in computed tomography images using Support Vector Machine classifier. The objective of this work is to compare the dominant grey level run length feature extraction method with wavelet based texture feature extraction method and SGLDM method. A dominant gray level run length texture feature set is derived from the region of interest (ROI) of the image to be selected. The optimal texture features are selected using Genetic Algorithm. The selected optimal run length texture features are fed to the Support Vector Machine classifier (SVM) to classify and segment the tumor from brain CT images. The method is applied on real data of CT images of 120 images with normal and abnormal tumor images. The results are compared with radiologist labeled ground truth. Quantitative analysis between ground truth and segmented tumor is presented in terms of classification accuracy. From the analysis and performance measures like classification accuracy, it is inferred that the brain tumor classification and segmentation is best done using SVM with dominant run length feature extraction method than SVM with wavelet based texture feature extraction method and SVM with SGLDM method. In this work,we have attempted to improve the computing efficiency as it selects the most suitable feature extration method that can used for classification and segmentation of brain tumor in CT images efficiently and accurately. An avearage accuracy rate of above 97% was obtained usinh this classification and segmentation algorithm.

Keywords: Dominant Gray Level Run Length Matrix method (DGLRLM), Support Vector Machine (SVM), Spatial Gray Level Dependence Matrix method (SGLDM), Genetic Algorithm(GA).

A PADMA and R.Sukanesh, “Automatic Classification and Segmentation of Brain Tumor in CT Images using Optimal Dominant Gray level Run length Texture Features” International Journal of Advanced Computer Science and Applications(IJACSA), 2(10), 2011. http://dx.doi.org/10.14569/IJACSA.2011.021009

@article{PADMA2011,
title = {Automatic Classification and Segmentation of Brain Tumor in CT Images using Optimal Dominant Gray level Run length Texture Features},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2011.021009},
url = {http://dx.doi.org/10.14569/IJACSA.2011.021009},
year = {2011},
publisher = {The Science and Information Organization},
volume = {2},
number = {10},
author = {A PADMA and R.Sukanesh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org