The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • GIDP 2026
  • ICONS_BA 2025

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • RSS Feed

DOI: 10.14569/IJACSA.2011.021119
PDF

A Fuzzy Similarity Based Concept Mining Model for Text Classification

Author 1: Shalini Puri

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 2 Issue 11, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Text Classification is a challenging and a red hot field in the current scenario and has great importance in text categorization applications. A lot of research work has been done in this field but there is a need to categorize a collection of text documents into mutually exclusive categories by extracting the concepts or features using supervised learning paradigm and different classification algorithms. In this paper, a new Fuzzy Similarity Based Concept Mining Model (FSCMM) is proposed to classify a set of text documents into pre - defined Category Groups (CG) by providing them training and preparing on the sentence, document and integrated corpora levels along with feature reduction, ambiguity removal on each level to achieve high system performance. Fuzzy Feature Category Similarity Analyzer (FFCSA) is used to analyze each extracted feature of Integrated Corpora Feature Vector (ICFV) with the corresponding categories or classes. This model uses Support Vector Machine Classifier (SVMC) to classify correctly the training data patterns into two groups; i. e., + 1 and – 1, thereby producing accurate and correct results. The proposed model works efficiently and effectively with great performance and high - accuracy results.

Keywords: Text Classification; Natural Language Processing; Feature Extraction; Concept Mining; Fuzzy Similarity Analyzer; Dimensionality Reduction; Sentence Level; Document Level; Integrated Corpora Level Processing.

Shalini Puri. “ A Fuzzy Similarity Based Concept Mining Model for Text Classification”. International Journal of Advanced Computer Science and Applications (IJACSA) 2.11 (2011). http://dx.doi.org/10.14569/IJACSA.2011.021119

@article{Puri2011,
title = { A Fuzzy Similarity Based Concept Mining Model for Text Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2011.021119},
url = {http://dx.doi.org/10.14569/IJACSA.2011.021119},
year = {2011},
publisher = {The Science and Information Organization},
volume = {2},
number = {11},
author = {Shalini Puri}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

Artificial Intelligence Conference 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computer Vision Conference
  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

The Science and Information (SAI) Organization Limited is a company registered in England and Wales under Company Number 8933205.