The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Editors
  • Archives
  • Indexing
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Contradiction Resolution of Competitive and Input Neurons to Improve Prediction and Visualization Performance

Author 1: Ryotaro Kamimura

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJARAI.2013.021206

Article Published in International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 2 Issue 12, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we propose a new type of informationtheoretic method to resolve the contradiction observed in competitive and input neurons. For competitive neurons, contradiction between self-evaluation (individuality) and outer-evaluation (collectivity) exists, which is reduced to realize the self-organizing maps. For input neurons, there exists contradiction between the use of many and few input neurons. We try to realize a situation where as many input neurons as possible are used, and at the same time, another where only a few input neurons are used. This contradictory situation can be resolved by viewing input neurons on different levels, namely, the individual and average level. We applied contradiction resolution to two data sets, namely, the Japanese short term economy survey (Tankan) and Dollar-Yen exchange rates. In both data sets, we succeeded in improving the prediction performance. Many input neurons were used on average, but a few input neurons were only taken for each input pattern. In addition, connection weights were condensed into a small number of distinct groups for better prediction and interpretation performance.

Keywords: contradiction resolution; self- and outer-evaluation; visualization; self-organizing maps; dependent input neuron selection

Ryotaro Kamimura, “Contradiction Resolution of Competitive and Input Neurons to Improve Prediction and Visualization Performance” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 2(12), 2013. http://dx.doi.org/10.14569/IJARAI.2013.021206

@article{Kamimura2013,
title = {Contradiction Resolution of Competitive and Input Neurons to Improve Prediction and Visualization Performance},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2013.021206},
url = {http://dx.doi.org/10.14569/IJARAI.2013.021206},
year = {2013},
publisher = {The Science and Information Organization},
volume = {2},
number = {12},
author = {Ryotaro Kamimura}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org