The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Evolving Software Effort Estimation Models Using Multigene Symbolic Regression Genetic Programming

Author 1: Sultan Aljahdali
Author 2: Alaa Sheta

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJARAI.2013.021207

Article Published in International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 2 Issue 12, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Software has played an essential role in engineering, economic development, stock market growth and military applications. Mature software industry count on highly predictive software effort estimation models. Correct estimation of software effort lead to correct estimation of budget and development time. It also allows companies to develop appropriate time plan for marketing campaign. Now a day it became a great challenge to get these estimates due to the increasing number of attributes which affect the software development life cycle. Software cost estimation models should be able to provide sufficient confidence on its prediction capabilities. Recently, Computational Intelligence (CI) paradigms were explored to handle the software effort estimation problem with promising results. In this paper we evolve two new models for software effort estimation using Multigene Symbolic Regression Genetic Programming (GP). One model utilizes the Source Line Of Code (SLOC) as input variable to estimate the Effort (E); while the second model utilize the Inputs, Outputs, Files, and User Inquiries to estimate the Function Point (FP). The proposed GP models show better estimation capabilities compared to other reported models in the literature. The validation results are accepted based Albrecht data set.

Keywords:

Sultan Aljahdali and Alaa Sheta, “Evolving Software Effort Estimation Models Using Multigene Symbolic Regression Genetic Programming” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 2(12), 2013. http://dx.doi.org/10.14569/IJARAI.2013.021207

@article{Aljahdali2013,
title = {Evolving Software Effort Estimation Models Using Multigene Symbolic Regression Genetic Programming},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2013.021207},
url = {http://dx.doi.org/10.14569/IJARAI.2013.021207},
year = {2013},
publisher = {The Science and Information Organization},
volume = {2},
number = {12},
author = {Sultan Aljahdali and Alaa Sheta}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org