The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Hybrid of Rough Neural Networks for Arabic/Farsi Handwriting Recognition

Author 1: Elsayed Radwan

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJARAI.2013.020207

Article Published in International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 2 Issue 2, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Handwritten character recognition is one of the focused areas of research in the field of Pattern Recognition. In this paper, a hybrid model of rough neural network has been developed for recognizing isolated Arabic/Farsi digital characters. It solves the neural network problems; proneness to overfitting, and the empirical nature of model development using rough sets and the dissimilarity analysis. Moreover the perturbation in the input data is violated using rough neuron. This paper describes an evolutionary rough neural network based technique to recognize Arabic/Farsi isolated handwritten digital characters. This method involves hierarchical feature extraction, data clustering and classification. In contrast with conventional neural network, a comparative study is appeared. Also, the details and limitations are discussed.

Keywords: Rough Sets; Rough Neural Network; Arabic/Farsi Digit Recognition; Dissimilarity Analysis; and Classification.

Elsayed Radwan, “Hybrid of Rough Neural Networks for Arabic/Farsi Handwriting Recognition” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 2(2), 2013. http://dx.doi.org/10.14569/IJARAI.2013.020207

@article{Radwan2013,
title = {Hybrid of Rough Neural Networks for Arabic/Farsi Handwriting Recognition},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2013.020207},
url = {http://dx.doi.org/10.14569/IJARAI.2013.020207},
year = {2013},
publisher = {The Science and Information Organization},
volume = {2},
number = {2},
author = {Elsayed Radwan}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2022

3-4 March 2022

  • Virtual

Computing Conference 2022

14-15 July 2022

  • Hybrid / London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org