The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2013.020308
PDF

Evolutionary Approaches to Expensive Optimisation

Author 1: Maumita Bhattacharya

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 2 Issue 3, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Surrogate assisted evolutionary algorithms (EA) are rapidly gaining popularity where applications of EA in complex real world problem domains are concerned. Although EAs are powerful global optimizers, finding optimal solution to complex high dimensional, multimodal problems often require very expensive fitness function evaluations. Needless to say, this could brand any population-based iterative optimization technique to be the most crippling choice to handle such problems. Use of approximate model or surrogates provides a much cheaper option. However, naturally this cheaper option comes with its own price! This paper discusses some of the key issues involved with use of approximation in evolutionary algorithm, possible best practices and solutions. Answers to the following questions have been sought: what type of fitness approximation to be used; which approximation model to use; how to integrate the approximation model in EA; how much approximation to use; and how to ensure reliable approximation.

Keywords: Optimization; Evolutionary Algorithm, Approximation Model; Fitness Approximation; Meta-model; Surrogate

Maumita Bhattacharya, “Evolutionary Approaches to Expensive Optimisation” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 2(3), 2013. http://dx.doi.org/10.14569/IJARAI.2013.020308

@article{Bhattacharya2013,
title = {Evolutionary Approaches to Expensive Optimisation},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2013.020308},
url = {http://dx.doi.org/10.14569/IJARAI.2013.020308},
year = {2013},
publisher = {The Science and Information Organization},
volume = {2},
number = {3},
author = {Maumita Bhattacharya}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org