The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2011.020405
PDF

Dimensionality Reduction technique using Neural Networks – A Survey

Author 1: Shamla Mantri
Author 2: Nikhil S. Tarale
Author 3: Sudip C. Mahajan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 2 Issue 4, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A self-organizing map (SOM) is a classical neural network method for dimensionality reduction. It comes under the unsupervised class. SOM is a neural network that is trained using unsupervised learning to produce a low-dimensional, discretized representation of the input space of the training samples, called a map. SOM uses a neighborhood function to preserve the topological properties of the input space. SOM operates in two modes: training and mapping. Using the input examples, training builds the map. It is also called as vector quantization. In this paper, we first survey related dimension reduction methods and then examine their capabilities for face recognition. In this work, different dimensionality reduction techniques such as Principal component analysis [PCA], independent component analysis [ICA] and self-organizing map [SOM] are selected and applied in order to reduce the loss of classification performance due to changes in facial expression. The experiments were conducted on ORL face database and the results show that SOM is a better technique.

Keywords: Principal component analysis [PCA]; Independent component analysis [ICA]; self-organizing map [SOM]; Face recognition.

Shamla Mantri, Nikhil S. Tarale and Sudip C. Mahajan, “ Dimensionality Reduction technique using Neural Networks – A Survey” International Journal of Advanced Computer Science and Applications(IJACSA), 2(4), 2011. http://dx.doi.org/10.14569/IJACSA.2011.020405

@article{Mantri2011,
title = { Dimensionality Reduction technique using Neural Networks – A Survey},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2011.020405},
url = {http://dx.doi.org/10.14569/IJACSA.2011.020405},
year = {2011},
publisher = {The Science and Information Organization},
volume = {2},
number = {4},
author = {Shamla Mantri and Nikhil S. Tarale and Sudip C. Mahajan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org