Future of Information and Communication Conference (FICC) 2025
28-29 April 2025
Publication Links
IJACSA
Special Issues
Future of Information and Communication Conference (FICC)
Computing Conference
Intelligent Systems Conference (IntelliSys)
Future Technologies Conference (FTC)
International Journal of Advanced Computer Science and Applications(IJACSA), Volume 2 Issue 7, 2011.
Abstract: Bayesian networks (BN) are used in a big range of applications but they have one issue concerning parameter learning. In real application, training data are always incomplete or some nodes are hidden. To deal with this problem many learning parameter algorithms are suggested foreground EM, Gibbs sampling and RBE algorithms. In order to limit the search space and escape from local maxima produced by executing EM algorithm, this paper presents a learning parameter algorithm that is a fusion of EM and RBE algorithms. This algorithm incorporates the range of a parameter into the EM algorithm. This range is calculated by the first step of RBE algorithm allowing a regularization of each parameter in bayesian network after the maximization step of the EM algorithm. The threshold EM algorithm is applied in brain tumor diagnosis and show some advantages and disadvantages over the EM algorithm.
Fradj Ben Lamine, Karim Kalti and Mohamed Ali Mahjoub, “ The threshold EM algorithm for parameter learning in bayesian network with incomplete data” International Journal of Advanced Computer Science and Applications(IJACSA), 2(7), 2011. http://dx.doi.org/10.14569/IJACSA.2011.020713
@article{Lamine2011,
title = { The threshold EM algorithm for parameter learning in bayesian network with incomplete data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2011.020713},
url = {http://dx.doi.org/10.14569/IJACSA.2011.020713},
year = {2011},
publisher = {The Science and Information Organization},
volume = {2},
number = {7},
author = {Fradj Ben Lamine and Karim Kalti and Mohamed Ali Mahjoub}
}
Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.