The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2013.020701
PDF

Comparative study between the proposed shape independent clustering method and the conventional methods (K-means and the other)

Author 1: Kohei Arai
Author 2: Cahya Rahmad

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 2 Issue 7, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Cluster analysis aims at identifying groups of similar objects and, therefore helps to discover distribution of patterns and interesting correlations in the data sets. In this paper, we propose to provide a consistent partitioning of a dataset which allows identifying any shape of cluster patterns in case of numerical clustering, convex or non-convex. The method is based on layered structure representation that be obtained from measurement distance and angle of numerical data to the centroid data and based on the iterative clustering construction utilizing a nearest neighbor distance between clusters to merge. Encourage result show the effectiveness of the proposed technique.

Keywords: clustering algorithms; mlccd; shape independence clustering;

Kohei Arai and Cahya Rahmad, “Comparative study between the proposed shape independent clustering method and the conventional methods (K-means and the other)” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 2(7), 2013. http://dx.doi.org/10.14569/IJARAI.2013.020701

@article{Arai2013,
title = {Comparative study between the proposed shape independent clustering method and the conventional methods (K-means and the other)},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2013.020701},
url = {http://dx.doi.org/10.14569/IJARAI.2013.020701},
year = {2013},
publisher = {The Science and Information Organization},
volume = {2},
number = {7},
author = {Kohei Arai and Cahya Rahmad}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org