The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2011.020913
PDF

Prediction of Users Behavior through Correlation Rules

Author 1: Navin Kumar Tyagi
Author 2: A. K. Solanki

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 2 Issue 9, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Web usage mining is an application of Web mining which focus on the extraction of useful information from usage data of severs logs. In order to improve the usability of a Web site so that users can more easily find and retrieve information they are looking for, we proposed a recommendation methodology based on correlation rules. A correlation rule is measured not only by its support and confidence but also by the correlation between itemsets. Proposed methodology recommends interesting Web pages to the users on the basis of their behavior discovered from web log data. Association rules are generated using FP growth approach and we used two criteria for selecting interesting rules: Confidence and Cosine measure. We also proposed an algorithm for the recommendation process.

Keywords: Web usage mining; FPgrowth; Cosine measure; Usability; Association rules.

Navin Kumar Tyagi and A. K. Solanki, “Prediction of Users Behavior through Correlation Rules” International Journal of Advanced Computer Science and Applications(IJACSA), 2(9), 2011. http://dx.doi.org/10.14569/IJACSA.2011.020913

@article{Tyagi2011,
title = {Prediction of Users Behavior through Correlation Rules},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2011.020913},
url = {http://dx.doi.org/10.14569/IJACSA.2011.020913},
year = {2011},
publisher = {The Science and Information Organization},
volume = {2},
number = {9},
author = {Navin Kumar Tyagi and A. K. Solanki}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org