The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2014.030106
PDF

A New Trust Evaluation for Trust-based RS

Author 1: Sajjawat Charoenrien
Author 2: Saranya Maneeroj

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 3 Issue 1, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Trust-based recommender systems provide the recommendations on the most suitable items for the individual users by using the trust values from their trusted friends. Usually, the trust values are obtained directly from the users, or by calculated using the similarity values between the pair of users. However, the current trust value evaluation can cause the following three problems. First, it is difficult to identify the co-rated items for calculating the similarity values between the users. Second, the current trust value evaluation still has symmetry property which makes the same trust value on both directions (trustor and trustee). Finally, the current trust value evaluation does not focus on how to adjust the trust values for the remote user. To eliminate all of these problems, our purposed method consists of three new factors. First, the similarity values between the users are calculated using a latent factor model instead of the co-rated items. Second, in order to identify the trustworthiness for every user in trust network, the degrees of reliability are calculated. Finally, we use the number of hops for adjusting the trust value for the remote users who are expected to be low trust as shown in the real-world application concept. This trust evaluation leads to better predicted rating and getting more predictable ratings. Consequently, from our experiment, the more efficiency trust-based recommender system is obtained, comparing with the classical method on both accuracy and coverage.

Keywords: trust-based recommender systems; trust values; similarity values

Sajjawat Charoenrien and Saranya Maneeroj, “A New Trust Evaluation for Trust-based RS” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 3(1), 2014. http://dx.doi.org/10.14569/IJARAI.2014.030106

@article{Charoenrien2014,
title = {A New Trust Evaluation for Trust-based RS},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2014.030106},
url = {http://dx.doi.org/10.14569/IJARAI.2014.030106},
year = {2014},
publisher = {The Science and Information Organization},
volume = {3},
number = {1},
author = {Sajjawat Charoenrien and Saranya Maneeroj}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org