The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2012.031125
PDF

Improving Web Page Prediction Using Default Rule Selection

Author 1: Thanakorn Pamutha
Author 2: Chom Kimpan
Author 3: Siriporn Chimplee
Author 4: Parinya Sanguansat

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 11, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Mining user patterns of web log files can provide significant and useful informative knowledge. A large amount of research has been done in trying to predict correctly the pages a user will most likely request next. Markov models are the most commonly used approaches for this type of web access prediction. Web page prediction requires the development of models that can predict a user’s next access to a web server. Many researchers have proposed a novel approach that integrates Markov models, association rules and clustering in web site access predictability. The low order Markov models provide higher coverage, but these are couched in ambiguous rules. In this paper, we introduce the use of default rule in resolving web access ambiguous predictions. This method could provide better prediction than using the individual traditional models. The results have shown that the default rule increases the accuracy and model-accuracy of web page access predictions. It also applies to association rules and the other combined models.

Keywords: web mining, web usage mining; user navigation session; Markov model; association rules; Web page prediction; rule-selection methods.

Thanakorn Pamutha, Chom Kimpan, Siriporn Chimplee and Parinya Sanguansat, “Improving Web Page Prediction Using Default Rule Selection” International Journal of Advanced Computer Science and Applications(IJACSA), 3(11), 2012. http://dx.doi.org/10.14569/IJACSA.2012.031125

@article{Pamutha2012,
title = {Improving Web Page Prediction Using Default Rule Selection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.031125},
url = {http://dx.doi.org/10.14569/IJACSA.2012.031125},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {11},
author = {Thanakorn Pamutha and Chom Kimpan and Siriporn Chimplee and Parinya Sanguansat}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org