The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2012.031126
PDF

Multilayer Neural Networks and Nearest Neighbor Classifier Performances for Image Annotation

Author 1: Mustapha OUJAOURA,
Author 2: Brahim MINAOUI
Author 3: Mohammed FAKIR

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 11, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The explosive growth of image data leads to the research and development of image content searching and indexing systems. Image annotation systems aim at annotating automatically animage with some controlled keywords that can be used for indexing and retrieval of images. This paper presents a comparative evaluation of the image content annotation system by using the multilayer neural networks and the nearest neighbour classifier. The region growing segmentation is used to separate objects, the Hu moments, Legendre moments and Zernike moments which are used in as feature descriptors for the image content characterization and annotation.The ETH-80 database image is used in the experiments here. The best annotation rate is achieved by using Legendre moments as feature extraction method and the multilayer neural network as a classifier.

Keywords: Image annotation; region growing segmentation; multilayer neural network classifier; nearest neighbour classifier; Zernike moments; Legendre moments; Hu moments; ETH-80 database.

Mustapha OUJAOURA,, Brahim MINAOUI and Mohammed FAKIR, “Multilayer Neural Networks and Nearest Neighbor Classifier Performances for Image Annotation” International Journal of Advanced Computer Science and Applications(IJACSA), 3(11), 2012. http://dx.doi.org/10.14569/IJACSA.2012.031126

@article{OUJAOURA,2012,
title = {Multilayer Neural Networks and Nearest Neighbor Classifier Performances for Image Annotation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.031126},
url = {http://dx.doi.org/10.14569/IJACSA.2012.031126},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {11},
author = {Mustapha OUJAOURA, and Brahim MINAOUI and Mohammed FAKIR}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org