The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2014.031103
PDF

A Multistage Feature Selection Model for Document Classification Using Information Gain and Rough Set

Author 1: Mrs. Leena. H. Patil
Author 2: Dr. Mohammed Atique

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 3 Issue 11, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Huge number of documents are increasing rapidly, therefore, to organize it in digitized form text categorization becomes an challenging issue. A major issue for text categorization is its large number of features. Most of the features are noisy, irrelevant and redundant, which may mislead the classifier. Hence, it is most important to reduce dimensionality of data to get smaller subset and provide the most gain in information. Feature selection techniques reduce the dimensionality of feature space. It also improves the overall accuracy and performance. Hence, to overcome the issues of text categorization feature selection is considered as an efficient technique . Therefore, we, proposed a multistage feature selection model to improve the overall accuracy and performance of classification. In the first stage document preprocessing part is performed. Secondly, each term within the documents are ranked according to their importance for classification using the information gain. Thirdly rough set technique is applied to the terms which are ranked importantly and feature reduction is carried out. Finally a document classification is performed on the core features using Naive Bayes and KNN classifier. Experiments are carried out on three UCI datasets, Reuters 21578, Classic 04 and Newsgroup 20. Results show the better accuracy and performance of the proposed model.

Keywords: Introduction; Document Preprocessing; Information Gain; Rough Set; Classifiers

Mrs. Leena. H. Patil and Dr. Mohammed Atique, “A Multistage Feature Selection Model for Document Classification Using Information Gain and Rough Set” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 3(11), 2014. http://dx.doi.org/10.14569/IJARAI.2014.031103

@article{Patil2014,
title = {A Multistage Feature Selection Model for Document Classification Using Information Gain and Rough Set},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2014.031103},
url = {http://dx.doi.org/10.14569/IJARAI.2014.031103},
year = {2014},
publisher = {The Science and Information Organization},
volume = {3},
number = {11},
author = {Mrs. Leena. H. Patil and Dr. Mohammed Atique}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org