The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2012.031204
PDF

Pattern Recognition-Based Environment Identification for Robust Wireless Devices Positioning

Author 1: Nesreen I. Ziedan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 12, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: There has been a continuous increase in the demands for Global Navigation Satellite System (GNSS) receivers in a wide range of applications. More and more wireless and mobile devices are equipped with built-in GNSS receivers; their users’ mobility behavior can result in challenging signal conditions that have detrimental effects on the receivers’ tracking and positioning accuracy. A major error source is the multipath signals, which are signals that are reflected off different surfaces and propagated to the receiver's antenna via different paths. Analysis of the received multipath signals indicated that their characteristics depend on the surrounding environment. This paper introduces a machine-learning pattern recognition algorithm that utilizes the aforementioned dependency to classify the multipath signals’ characteristics and identify the surrounding environment. The identified environment is utilized in a novel adaptive tracking technique that enables a GNSS receiver to change its tracking strategy to best suit the current signal condition. This will lead to a robust positioning under challenging signal conditions. The algorithm is verified using real and simulated Global Positioning System (GPS) signals with accurate multipath models.

Keywords: component; GPS; GNSS; machine learning; pattern recognition; PCA; PNN; multipath.

Nesreen I. Ziedan, “Pattern Recognition-Based Environment Identification for Robust Wireless Devices Positioning” International Journal of Advanced Computer Science and Applications(IJACSA), 3(12), 2012. http://dx.doi.org/10.14569/IJACSA.2012.031204

@article{Ziedan2012,
title = {Pattern Recognition-Based Environment Identification for Robust Wireless Devices Positioning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.031204},
url = {http://dx.doi.org/10.14569/IJACSA.2012.031204},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {12},
author = {Nesreen I. Ziedan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org