The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2014.030201
PDF

Static Gesture Recognition Combining Graph and Appearance Features

Author 1: Marimpis Avraam

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 3 Issue 2, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper we propose the combination of graph-based characteristics and appearance-based descriptors such as detected edges for modeling static gestures. Initially we convolve the original image with a Gaussian kernel and blur the image. Canny edges are then extracted. The blurring is performed in order to enhance some characteristics in the image that are crucial for the topology of the gesture (especially when the fingers are overlapping). There are a large number of properties that can describe a graph, one of which is the adjacency matrix that describes the topology of the graph itself. We approximate the topology of the hand utilizing Neural Gas with Competitive Hebbian Learning, generating a graph. From the graph we extract the Laplacian matrix and calculate its spectrum. Both canny edges and Laplacian spectrum are used as features. As a classifier we employ Linear Discriminant Analysis with Bayes’ Rule. We apply our method on a published American Sign Language dataset (ten classes) and the results are very promising and further study of this approach is imminent from the authors.

Keywords: Gesture Recognition; Neural Gas; Linear Discriminant Analysis; Bayes Rule; Laplacian Matrix

Marimpis Avraam, “Static Gesture Recognition Combining Graph and Appearance Features” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 3(2), 2014. http://dx.doi.org/10.14569/IJARAI.2014.030201

@article{Avraam2014,
title = {Static Gesture Recognition Combining Graph and Appearance Features},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2014.030201},
url = {http://dx.doi.org/10.14569/IJARAI.2014.030201},
year = {2014},
publisher = {The Science and Information Organization},
volume = {3},
number = {2},
author = {Marimpis Avraam}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org