The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2014.030203
PDF

Human Gait Gender Classification using 3D Discrete Wavelet Transform Feature Extraction

Author 1: Kohei Arai
Author 2: Rosa Andrie Asmara

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 3 Issue 2, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Feature extraction for gait recognition has been created widely. The ancestor for this task is divided into two parts, model based and free-model based. Model-based approaches obtain a set of static or dynamic skeleton parameters via modeling or tracking body components such as limbs, legs, arms and thighs. Model-free approaches focus on shapes of silhouettes or the entire movement of physical bodies. Model-free approaches are insensitive to the quality of silhouettes. Its advantage is a low computational costs comparing to model-based approaches. However, they are usually not robust to viewpoints and scale. Imaging technology also developed quickly this decades. Motion capture (mocap) device integrated with motion sensor has an expensive price and can only be owned by big animation studio. Fortunately now already existed Kinect camera equipped with depth sensor image in the market with very low price compare to any mocap device. Of course the accuracy not as good as the expensive one, but using some preprocessing method we can remove the jittery and noisy in the 3D skeleton points. Our proposed method is to analyze the effectiveness of 3D skeleton feature extraction using 3D Discrete Wavelet Transforms (3D DWT). We use Kinect Camera to get the depth data. We use Ipisoft mocap software to extract 3d skeleton model from Kinect video. From the experimental results shows 83.75% correctly classified instances using SVM.

Keywords: gender gait classification; 3D Skeleton Model; SVM; Biometrics; 3D DWT

Kohei Arai and Rosa Andrie Asmara, “Human Gait Gender Classification using 3D Discrete Wavelet Transform Feature Extraction” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 3(2), 2014. http://dx.doi.org/10.14569/IJARAI.2014.030203

@article{2014,
title = {Human Gait Gender Classification using 3D Discrete Wavelet Transform Feature Extraction},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2014.030203},
url = {http://dx.doi.org/10.14569/IJARAI.2014.030203},
year = {2014},
publisher = {The Science and Information Organization},
volume = {3},
number = {2},
author = {Kohei Arai and Rosa Andrie Asmara}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org