The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2012.030524
PDF

Rotation-Invariant Neural Pattern Recognition System Using Extracted Descriptive Symmetrical Patterns

Author 1: YRehab F Abdel-Kader
Author 2: Rabab M. Ramadan
Author 3: Fayez W. Zaki
Author 4: Emad El-Sayed

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 5, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper a novel rotation-invariant neural-based pattern recognition system is proposed. The system incorporates a new image preprocessing technique to extract rotation-invariant descriptive patterns from the shapes. The proposed system applies a three phase algorithm on the shape image to extract the rotation-invariant pattern. First, the orientation angle of the shape is calculated using a newly developed shape orientation technique. The technique is effective, computationally inexpensive and can be applied to shapes with several non-equally separated axes of symmetry. A simple method to calculate the average angle of the shape’s axes of symmetry is defined. In this technique, only the first moment of inertia is considered to reduce the computational cost. In the second phase, the image is rotated using a simple rotation technique to adapt its orientation angle to any specific reference angle. Finally in the third phase, the image preprocessor creates a symmetrical pattern about the axis with the calculated orientation angle and the perpendicular axis on it. Performing this operation in both the neural network training and application phases, ensures that the test rotated patterns will enter the network in the same position as in the training. Three different approaches were used to create the symmetrical patterns from the shapes. Experimental results indicate that the proposed approach is very effective and provide a recognition rate up to 99.5%.

Keywords: Rotation-Invariant;Pattern Recognition;Edge Detection;Shape Orientation;Image processing.

YRehab F Abdel-Kader, Rabab M. Ramadan, Fayez W. Zaki and Emad El-Sayed, “ Rotation-Invariant Neural Pattern Recognition System Using Extracted Descriptive Symmetrical Patterns” International Journal of Advanced Computer Science and Applications(IJACSA), 3(5), 2012. http://dx.doi.org/10.14569/IJACSA.2012.030524

@article{Abdel-Kader2012,
title = { Rotation-Invariant Neural Pattern Recognition System Using Extracted Descriptive Symmetrical Patterns},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.030524},
url = {http://dx.doi.org/10.14569/IJACSA.2012.030524},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {5},
author = {YRehab F Abdel-Kader and Rabab M. Ramadan and Fayez W. Zaki and Emad El-Sayed}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org