The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2012.030917
PDF

Particle Swarm Optimization for Calibrating and Optimizing Xinanjiang Model Parameters

Author 1: Kuok King Kuok
Author 2: Chiu Po Chan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 9, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The Xinanjiang model, a conceptual hydrological model is well known and widely used in China since 1970s. Therefore, most of the parameters in Xinanjiang model have been calibrated and pre-set according to different climate, dryness, wetness, humidity, topography for various catchment areas in China. However, Xinanjiang model is not applied in Malaysia yet and the optimal parameters are not known. The calibration of Xinanjiang model parameters through trial and error method required much time and effort to obtain better results. Therefore, Particle Swarm Optimization (PSO) is adopted to calibrate Xinanjiang model parameters automatically. In this paper, PSO algorithm is used to find the best set of parameters for both daily and hourly models. The selected study area is Bedup Basin, located at Samarahan Division, Sarawak, Malaysia. For daily model, input data used for model calibration was daily rainfall data Year 2001, and validated with data Year 1990, 1992, 2000, 2002 and 2003. A single storm event dated 9th to 12thOctober 2003 was used to calibrate hourly model and validated with 12 different storm events. The accuracy of the simulation results are measured using Coefficient of Correlation (R) and Nash-Sutcliffe Coefficient (E2). Results show that PSO is able to optimize the 12 parameters of Xinanjiang model accurately. For daily model, the best R and E2 for model calibration are found to be 0.775 and 0.715 respectively, and average R=0.622 and E2=0.579 for validation set. Meanwhile, R=0.859 and E2=0.892 are yielded when calibrating hourly model, and the average R and E2 obtained are 0.705 and 0.647 respectively for validation set.

Keywords: Conceptual rainfall-runoff model; Particle Swarm Optimization; Xinanjiang model calibration.

Kuok King Kuok and Chiu Po Chan, “Particle Swarm Optimization for Calibrating and Optimizing Xinanjiang Model Parameters” International Journal of Advanced Computer Science and Applications(IJACSA), 3(9), 2012. http://dx.doi.org/10.14569/IJACSA.2012.030917

@article{Kuok2012,
title = {Particle Swarm Optimization for Calibrating and Optimizing Xinanjiang Model Parameters},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.030917},
url = {http://dx.doi.org/10.14569/IJACSA.2012.030917},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {9},
author = {Kuok King Kuok and Chiu Po Chan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org