The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Improved Accuracy of PSO and DE using Normalization: an Application to Stock Price Prediction

Author 1: Savinderjit Kaur
Author 2: Veenu Mangat

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2012.030930

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 9, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Data Mining is being actively applied to stock market since 1980s. It has been used to predict stock prices, stock indexes, for portfolio management, trend detection and for developing recommender systems. The various algorithms which have been used for the same include ANN, SVM, ARIMA, GARCH etc. Different hybrid models have been developed by combining these algorithms with other algorithms like roughest, fuzzy logic, GA, PSO, DE, ACO etc. to improve the efficiency. This paper proposes DE-SVM model (Differential Evolution- Support vector Machine) for stock price prediction. DE has been used to select best free parameters combination for SVM to improve results. The paper also compares the results of prediction with the outputs of SVM alone and PSO-SVM model (Particle Swarm Optimization). The effect of normalization of data on the accuracy of prediction has also been studied.

Keywords: Differential evolution; Parameter optimization; Stock price prediction; Support vector Machines; Normalization.

Savinderjit Kaur and Veenu Mangat, “Improved Accuracy of PSO and DE using Normalization: an Application to Stock Price Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 3(9), 2012. http://dx.doi.org/10.14569/IJACSA.2012.030930

@article{Kaur2012,
title = {Improved Accuracy of PSO and DE using Normalization: an Application to Stock Price Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.030930},
url = {http://dx.doi.org/10.14569/IJACSA.2012.030930},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {9},
author = {Savinderjit Kaur and Veenu Mangat}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org