The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2012.030906
PDF

Feature Subsumption for Sentiment Classification of Dynamic Data in Social Networks using SCDDF

Author 1: Jayanag. B
Author 2: Vineela. K
Author 3: Dr. Vasavi. S

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 9, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The analysis of opinions till now is done mostly on static data rather than on the dynamic data. Opinions may vary in time. Earlier methods concentrated on opinions expressed in an individual site. But on a given concept opinions may vary from site to site. Also the past works did not consider the opinions at aggregate level. This paper proposes a novel method for Sentiment Classification that uses Dynamic Data Features (SCDDF). Experiments were conducted on various product reviews collected from different sites using QTP. Opinions were aggregated using Bayesian networks and Natural Language Processing techniques. Bulk amount of dynamic data is considered rather than the static one. Our method takes as input a collection of comments from the social networks and outputs ranks to the comments within each site and finally classifies all comments irrespective of the site it belongs to. Thus the user is presented with overall evaluation of the product and its features.

Keywords: Sentiment classification; Natural language processing (NLP); opinions; features; Quick Test Professional (QTP); feature identification; sentiment prediction; summary generation.

Jayanag. B, Vineela. K and Dr. Vasavi. S, “Feature Subsumption for Sentiment Classification of Dynamic Data in Social Networks using SCDDF” International Journal of Advanced Computer Science and Applications(IJACSA), 3(9), 2012. http://dx.doi.org/10.14569/IJACSA.2012.030906

@article{B2012,
title = {Feature Subsumption for Sentiment Classification of Dynamic Data in Social Networks using SCDDF},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.030906},
url = {http://dx.doi.org/10.14569/IJACSA.2012.030906},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {9},
author = {Jayanag. B and Vineela. K and Dr. Vasavi. S}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org