The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2012.030907
PDF

Application of Relevance Vector Machines in Real Time Intrusion Detection

Author 1: Naveen N. C
Author 2: Dr Natarajan.S
Author 3: Dr Srinivasan.R

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 3 Issue 9, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the recent years, there has been a growing interest in the development of change detection techniques for the analysis of Intrusion Detection. This interest stems from the wide range of applications in which change detection methods can be used. Detecting the changes by observing data collected at different times is one of the most important applications of network security because they can provide analysis of short interval on global scale. Research in exploring change detection techniques for medium/high network data can be found for the new generation of very high resolution data. The advent of these technologies has greatly increased the ability to monitor and resolve the details of changes and makes it possible to analyze. At the same time, they present a new challenge over other technologies in that a relatively large amount of data must be analyzed and corrected for registration and classification errors to identify frequently changing trend. In this research paper an approach for Intrusion Detection System (IDS) which embeds a Change Detection Algorithm with Relevance Vector Machine (RVM) is proposed. IDS are considered as a complex task that handles a huge amount of network related data with different parameters. Current research work has proved that kernel learning based methods are very effective in addressing these problems. In contrast to Support Vector Machines (SVM), the RVM provides a probabilistic output while preserving the accuracy. The focus of this paper is to model RVM that can work with large network data set in a real environment and develop RVM classifier for IDS. The new model consists of Change Point (CP) and RVM which is competitive in processing time and improve the classification performance compared to other known classification model like SVM. The goal is to make the system simple but efficient in detecting network intrusion in an actual real time environment. Results show that the model learns more effectively, automatically adjust to the changes and adjust the threshold while minimizing the false alarm rate with timely detection.

Keywords: Intrusion Detection; Change Point Detection; Relevance Vector Machine; Outlier Detection.

Naveen N. C, Dr Natarajan.S and Dr Srinivasan.R, “Application of Relevance Vector Machines in Real Time Intrusion Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 3(9), 2012. http://dx.doi.org/10.14569/IJACSA.2012.030907

@article{C2012,
title = {Application of Relevance Vector Machines in Real Time Intrusion Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2012.030907},
url = {http://dx.doi.org/10.14569/IJACSA.2012.030907},
year = {2012},
publisher = {The Science and Information Organization},
volume = {3},
number = {9},
author = {Naveen N. C and Dr Natarajan.S and Dr Srinivasan.R}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org