The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2013.041005
PDF

Synthetic template: effective tool for target classification and machine vision

Author 1: Kaveh Heidary

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 10, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A process for replacing a voluminous image dictionary, which characterizes a certain target of interest in a constrained zone of effectiveness representing controlled states including scale and view angle, with a synthetic template has been developed. Synthetic template (ST) is a spatial map (grayscale image) obtained by combining the set of zone-specific training images that are ascribed to the target of interest. It has been shown that the solo-template ST correlation filter outperforms filter banks comprised of multiple target-class training images. A geometric interpretation of the basic ST concept is employed in order to further explain and substantiate its properties.

Keywords: machine vision; image procession; target classification; correlation filter

Kaveh Heidary, “Synthetic template: effective tool for target classification and machine vision” International Journal of Advanced Computer Science and Applications(IJACSA), 4(10), 2013. http://dx.doi.org/10.14569/IJACSA.2013.041005

@article{Heidary2013,
title = {Synthetic template: effective tool for target classification and machine vision},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.041005},
url = {http://dx.doi.org/10.14569/IJACSA.2013.041005},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {10},
author = {Kaveh Heidary}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org