The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Recognition of Objects by Using Genetic Programming

Author 1: Nerses Safaryan
Author 2: Hakob Sarukhanyan

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2013.041219

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 12, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This document is devoted to the task of object detection and recognition in digital images by using genetic programming. The goal was to improve and simplify existing approaches. The detection and recognition are achieved by means of extracting the features. A genetic program is used to extract and classify features of objects. Simple features and primitive operators are processed in genetic programming operations. We are trying to detect and to recognize objects in SAR images. Due to the new approach described in this article, five and seven types of objects were recognized with good recognition results.

Keywords: Terminals; Fitness; Selection; Crossover; Mutation; Ground Truth

Nerses Safaryan and Hakob Sarukhanyan, “Recognition of Objects by Using Genetic Programming” International Journal of Advanced Computer Science and Applications(IJACSA), 4(12), 2013. http://dx.doi.org/10.14569/IJACSA.2013.041219

@article{Safaryan2013,
title = {Recognition of Objects by Using Genetic Programming},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.041219},
url = {http://dx.doi.org/10.14569/IJACSA.2013.041219},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {12},
author = {Nerses Safaryan and Hakob Sarukhanyan}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2022

3-4 March 2022

  • Virtual

Computing Conference 2022

14-15 July 2022

  • Hybrid / London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org