The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2013.041204
PDF

Color, texture and shape descriptor fusion with Bayesian network classifier for automatic image annotation

Author 1: Mustapha OUJAOURA
Author 2: Brahim MINAOUI
Author 3: Mohammed FAKIR

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 12, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Due to the large amounts of multimedia data prevalent on the Web, Some images presents textural motifs while others may be recognized with colors or shapes of their content. The use of descriptors based on one’s features extraction method, such as color or texture or shape, for automatic image annotation are not efficient in some situations or in absence of the chosen type. The proposed approach is to use a fusion of some efficient color, texture and shape descriptors with Bayesian networks classifier to allow automatic annotation of different image types. This document provides an automatic image annotation that merges some descriptors in a parallel manner to have a vector that represents the various types of image characteristics. This allows increasing the rate and accuracy of the annotation system. The Texture, color histograms, and Legendre moments, are used and merged respectively together in parallel as color, texture and shape features extraction methods, with Bayesian network classifier, to annotate the image content with the appropriate keywords. The accuracy of the proposed approach is supported by the good experimental results obtained from ETH-80 databases.

Keywords: image annotation; k-means segmentation; Bayesian networks; color histograms; Legendre moments; Texture; ETH-80 database

Mustapha OUJAOURA, Brahim MINAOUI and Mohammed FAKIR, “Color, texture and shape descriptor fusion with Bayesian network classifier for automatic image annotation” International Journal of Advanced Computer Science and Applications(IJACSA), 4(12), 2013. http://dx.doi.org/10.14569/IJACSA.2013.041204

@article{OUJAOURA2013,
title = {Color, texture and shape descriptor fusion with Bayesian network classifier for automatic image annotation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.041204},
url = {http://dx.doi.org/10.14569/IJACSA.2013.041204},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {12},
author = {Mustapha OUJAOURA and Brahim MINAOUI and Mohammed FAKIR}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org