The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2015.040205
PDF

A Trust-based Mechanism for Avoiding Liars in Referring of Reputation in Multiagent System

Author 1: Manh Hung Nguyen
Author 2: Dinh Que Tran

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 4 Issue 2, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Trust is considered as the crucial factor for agents in decision making to choose the most trustworthy partner during their interaction in open distributed multiagent systems. Most current trust models are the combination of experience trust and reference trust, in which the reference trust is estimated from the judgements of agents in the community about a given partner. These models are based on the assumption that all agents are reliable when they share their judgements about a given partner to the others. However, these models are no more longer appropriate to applications of multiagent systems, where several concurrent agents may not be ready to share their private judgement about others or may share the wrong data by lying to their partners. In this paper, we introduce a combination model of experience trust and experience trust with a mechanism to enable agents take into account the trustworthiness of referees when they refer their judgement about a given partner. We conduct experiments to evaluate the proposed model in the context of the e-commerce environment. Our research results suggest that it is better to take into account the trustworthiness of referees when they share their judgement about partners. The experimental results also indicate that although there are liars in the multiagent systems, combination trust computation is better than the trust computation based only on the experience trust of agents.

Keywords: Multiagent system, Trust, Reputation, Liar.

Manh Hung Nguyen and Dinh Que Tran, “A Trust-based Mechanism for Avoiding Liars in Referring of Reputation in Multiagent System” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 4(2), 2015. http://dx.doi.org/10.14569/IJARAI.2015.040205

@article{Nguyen2015,
title = {A Trust-based Mechanism for Avoiding Liars in Referring of Reputation in Multiagent System},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2015.040205},
url = {http://dx.doi.org/10.14569/IJARAI.2015.040205},
year = {2015},
publisher = {The Science and Information Organization},
volume = {4},
number = {2},
author = {Manh Hung Nguyen and Dinh Que Tran}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org