The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2013.040337
PDF

Toward Evolution Strategies Application in Automatic Polyphonic Music Transcription using Electronic Synthesis

Author 1: Herve Kabamba Mbikayi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 3, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: We present in this paper a new approach for polyphonic music transcription using evolution strategies (ES). Automatic music transcription is a complex process that still remains an open challenge. Using an audio signal to be transcribed as target for our ES, information needed to generate a MIDI file can be extracted from this latter one. Many techniques presented in the literature at present exist and a few of them have applied evolutionary algorithms to address this problem in the context of considering it as a search space problem. However, ES have never been applied until now. The experiments showed that by using these machines learning tools, some shortcomings presented by other evolutionary algorithms based approaches for transcription can be solved. They include the computation cost and the time for convergence. As evolution strategies use self-adapting parameters, we show in this paper that by correctly tuning the value of its strategy parameter that controls the standard deviation, a fast convergence can be triggered toward the optima, which from the results performs the transcription of the music with good accuracy and in a short time. In the same context, the computation task is tackled using parallelization techniques thus reducing the computation time and the transcription time in the overall.

Keywords: evolution strategy; polyphonic music transcription; FFT; electronic synthesis; MIDI; notes; frequency; audio; signal; fundamental frequency; pitch detection; F0; chords; monophonic; contours

Herve Kabamba Mbikayi, “Toward Evolution Strategies Application in Automatic Polyphonic Music Transcription using Electronic Synthesis” International Journal of Advanced Computer Science and Applications(IJACSA), 4(3), 2013. http://dx.doi.org/10.14569/IJACSA.2013.040337

@article{Mbikayi2013,
title = {Toward Evolution Strategies Application in Automatic Polyphonic Music Transcription using Electronic Synthesis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.040337},
url = {http://dx.doi.org/10.14569/IJACSA.2013.040337},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {3},
author = {Herve Kabamba Mbikayi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org