The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Proposals

DOI: 10.14569/SpecialIssue.2014.040315
PDF

Reducing the Correlation Processing Time by Using a Novel Intrusion Alert Correlation Model

Author 1: Huwaida Tagelsir Ibrahim Elshoush

International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Extended Papers from Science and Information Conference 2014, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Alert correlation analyzes the alerts from one or more Collaborative Intrusion Detection Systems (CIDSs) to produce a concise overview of security-related activity on the network. The correlation process consists of multiple components, each responsible for a different aspect of the overall correlation goal. The sequential order of the correlation components affects the correlation process performance. Furthermore, the total time needed for the whole process depends on the number of processed alerts in each component. This paper presents an innovative alert correlation framework that minimizes the number of processed alerts on each component and thus reducing the correlation processing time. By reordering the components, the introduced correlation model reduces the number of processed alerts as early as possible by discarding the irrelevant, unreal and false alerts in the early phases of the correlation process. A new component, shushing the alerts, is added to deal with the unrelated and false positive alerts. A modified algorithm for fusing the alerts is outlined. The intruders’ intention is grouped into attack scenarios and thus used to detect future attacks. DARPA 2000 intrusion detection scenario specific datasets and a testbed network were used to evaluate the innovative alert correlation model. Comparisons with a previous correlation system were performed. The results of processing these datasets and recognizing the attack patterns demonstrated the potential of the improved correlation model and gave favorable results.

Keywords: Alert Correlation, Alert Reduction, Intrusion Detection Systems, False Alarm Rate

Huwaida Tagelsir Ibrahim Elshoush, “Reducing the Correlation Processing Time by Using a Novel Intrusion Alert Correlation Model” International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Extended Papers from Science and Information Conference 2014, 2014. http://dx.doi.org/10.14569/SpecialIssue.2014.040315

@article{Elshoush2014,
title = {Reducing the Correlation Processing Time by Using a Novel Intrusion Alert Correlation Model},
journal = {International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Extended Papers from Science and Information Conference 2014}
doi = {10.14569/SpecialIssue.2014.040315},
url = {http://dx.doi.org/10.14569/SpecialIssue.2014.040315},
year = {2014},
publisher = {The Science and Information Organization},
volume = {4},
number = {3},
author = {Huwaida Tagelsir Ibrahim Elshoush},
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org