The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2013.040406
PDF

Comparative Analysis of K-Means and Fuzzy C-Means Algorithms

Author 1: Soumi Ghosh
Author 2: Sanjay Kumar Dubey

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 4, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the arena of software, data mining technology has been considered as useful means for identifying patterns and trends of large volume of data. This approach is basically used to extract the unknown pattern from the large set of data for business as well as real time applications. It is a computational intelligence discipline which has emerged as a valuable tool for data analysis, new knowledge discovery and autonomous decision making. The raw, unlabeled data from the large volume of dataset can be classified initially in an unsupervised fashion by using cluster analysis i.e. clustering the assignment of a set of observations into clusters so that observations in the same cluster may be in some sense be treated as similar. The outcome of the clustering process and efficiency of its domain application are generally determined through algorithms. There are various algorithms which are used to solve this problem. In this research work two important clustering algorithms namely centroid based K-Means and representative object based FCM (Fuzzy C-Means) clustering algorithms are compared. These algorithms are applied and performance is evaluated on the basis of the efficiency of clustering output. The numbers of data points as well as the number of clusters are the factors upon which the behaviour patterns of both the algorithms are analyzed. FCM produces close results to K-Means clustering but it still requires more computation time than K-Means clustering.

Keywords: clustering; k-means; fuzzy c-means; time complexity

Soumi Ghosh and Sanjay Kumar Dubey, “Comparative Analysis of K-Means and Fuzzy C-Means Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 4(4), 2013. http://dx.doi.org/10.14569/IJACSA.2013.040406

@article{Ghosh2013,
title = {Comparative Analysis of K-Means and Fuzzy C-Means Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.040406},
url = {http://dx.doi.org/10.14569/IJACSA.2013.040406},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {4},
author = {Soumi Ghosh and Sanjay Kumar Dubey}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org