The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2015.040406
PDF

Lung Cancer Detection on CT Scan Images: A Review on the Analysis Techniques

Author 1: H. Mahersia
Author 2: M. Zaroug
Author 3: L. Gabralla

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 4 Issue 4, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Lung nodules are potential manifestations of lung cancer, and their early detection facilitates early treatment and improves patient’s chances for survival. For this reason, CAD systems for lung cancer have been proposed in several studies. All these works involved mainly three steps to detect the pulmonary nodule: preprocessing, segmentation of the lung and classification of the nodule candidates. This paper overviews the current state-of-the-art regarding all the approaches and techniques that have been investigated in the literature. It also provides a comparison of the performance of the existing approaches.

Keywords: Classification; Computed Tomography; Lung cancer; Nodules; Segmentation

H. Mahersia, M. Zaroug and L. Gabralla, “Lung Cancer Detection on CT Scan Images: A Review on the Analysis Techniques” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 4(4), 2015. http://dx.doi.org/10.14569/IJARAI.2015.040406

@article{Mahersia2015,
title = {Lung Cancer Detection on CT Scan Images: A Review on the Analysis Techniques},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2015.040406},
url = {http://dx.doi.org/10.14569/IJARAI.2015.040406},
year = {2015},
publisher = {The Science and Information Organization},
volume = {4},
number = {4},
author = {H. Mahersia and M. Zaroug and L. Gabralla}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org