The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2013.040503
PDF

Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms

Author 1: Yin Zhao
Author 2: Yahya Abu Hasan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 5, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Pollutant forecasting is an important problem in the environmental sciences. Data mining is an approach to discover knowledge from large data. This paper tries to use data mining methods to forecast ?PM?_(2.5) concentration level, which is an important air pollutant. There are several tree-based classification algorithms available in data mining, such as CART, C4.5, Random Forest (RF) and C5.0. RF and C5.0 are popular ensemble methods, which are, RF builds on CART with Bagging and C5.0 builds on C4.5 with Boosting, respectively. This paper builds ?PM?_(2.5) concentration level predictive models based on RF and C5.0 by using R packages. The data set includes 2000-2011 period data in a new town of Hong Kong. The ?PM?_(2.5) concentration is divided into 2 levels, the critical points is 25µg/m^3 (24 hours mean). According to 100 times 10-fold cross validation, the best testing accuracy is from RF model, which is around 0.845~0.854.

Keywords: Random Forest; C5.0; PM2.5 prediction; data mining.

Yin Zhao and Yahya Abu Hasan, “Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 4(5), 2013. http://dx.doi.org/10.14569/IJACSA.2013.040503

@article{Zhao2013,
title = {Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.040503},
url = {http://dx.doi.org/10.14569/IJACSA.2013.040503},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {5},
author = {Yin Zhao and Yahya Abu Hasan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org