The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2013.040601
PDF

A multi-scale method for automatically extracting the dominant features of cervical vertebrae in CT images

Author 1: Tung-Ying Wu
Author 2: Sheng-Fuu Lin

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 6, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Localization of the dominant points of cervical spines in medical images is important for improving the medical automation in clinical head and neck applications. In order to automatically identify the dominant points of cervical vertebrae in neck CT images with precision, we propose a method based on multi-scale contour analysis to analyzing the deformable shape of spines. To extract the spine contour, we introduce a method to automatically generate the initial contour of the spine shape, and the distance field for level set active contour iterations can also be deduced. In the shape analysis stage, we at first coarsely segment the extracted contour with zero-crossing points of the curvature based on the analysis with curvature scale space, and the spine shape is modeled with the analysis of curvature scale space. Then, each segmented curve is analyzed geometrically based on the turning angle property at different scales, and the local extreme points are extracted and verified as the dominant feature points. The vertices of the shape contour are approximately derived with the analysis at coarse scale, and then adjusted precisely at fine scale. Consequently, the results of experiment show that we approach a success rate of 93.4% and accuracy of 0.37mm by comparing with the manual results.

Keywords: cervical spine; active contour; curvature scale space; turning angle.

Tung-Ying Wu and Sheng-Fuu Lin, “A multi-scale method for automatically extracting the dominant features of cervical vertebrae in CT images” International Journal of Advanced Computer Science and Applications(IJACSA), 4(6), 2013. http://dx.doi.org/10.14569/IJACSA.2013.040601

@article{Wu2013,
title = {A multi-scale method for automatically extracting the dominant features of cervical vertebrae in CT images},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.040601},
url = {http://dx.doi.org/10.14569/IJACSA.2013.040601},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {6},
author = {Tung-Ying Wu and Sheng-Fuu Lin}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org