Future of Information and Communication Conference (FICC) 2025
28-29 April 2025
Publication Links
IJACSA
Special Issues
Future of Information and Communication Conference (FICC)
Computing Conference
Intelligent Systems Conference (IntelliSys)
Future Technologies Conference (FTC)
International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 6, 2013.
Abstract: The tangent plane algorithm is a fast sequential learning method for multilayered feedforward neural networks that accepts almost zero initial conditions for the connection weights with the expectation that only the minimum number of weights will be activated. However, the inclusion of a tendency to move away from the origin in weight space can lead to large weights that are harmful to generalization. This paper evaluates two techniques used to limit the size of the weights, weight growing and weight elimination, in the tangent plane algorithm. Comparative tests were carried out using the Extreme Learning Machine which is a fast global minimiser giving good generalization. Experimental results show that the generalization performance of the tangent plane algorithm with weight elimination is at least as good as the ELM algorithm making it a suitable alternative for problems that involve time varying data such as EEG and ECG signals.
P May, E Zhou and C. W. Lee, “A Comprehensive Evaluation of Weight Growth and Weight Elimination Methods Using the Tangent Plane Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 4(6), 2013. http://dx.doi.org/10.14569/IJACSA.2013.040621
@article{May2013,
title = {A Comprehensive Evaluation of Weight Growth and Weight Elimination Methods Using the Tangent Plane Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.040621},
url = {http://dx.doi.org/10.14569/IJACSA.2013.040621},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {6},
author = {P May and E Zhou and C. W. Lee}
}
Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.