The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2013.040608
PDF

A Strategy for Training Set Selection in Text Classification Problems

Author 1: Maria Luiza C. Passini
Author 2: Katiusca B. Estébanez
Author 3: Grazziela P. Figueredo
Author 4: Nelson F. F. Ebecken

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 6, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: An issue in text classification problems involves the choice of good samples on which to train the classifier. Training sets that properly represent the characteristics of each class have a better chance of establishing a successful predictor. Moreover, sometimes data are redundant or take large amounts of computing time for the learning process. To overcome this issue, data selection techniques have been proposed, including instance selection. Some data mining techniques are based on nearest neighbors, ordered removals, random sampling, particle swarms or evolutionary methods. The weaknesses of these methods usually involve a lack of accuracy, lack of robustness when the amount of data increases, over?tting and a high complexity. This work proposes a new immune-inspired suppressive mechanism that involves selection. As a result, data that are not relevant for a classifier’s ?nal model are eliminated from the training process. Experiments show the e?ectiveness of this method, and the results are compared to other techniques; these results show that the proposed method has the advantage of being accurate and robust for large data sets, with less complexity in the algorithm.

Keywords: text mining; data reduction; classification problems; feature selection

Maria Luiza C. Passini, Katiusca B. Estébanez, Grazziela P. Figueredo and Nelson F. F. Ebecken, “A Strategy for Training Set Selection in Text Classification Problems” International Journal of Advanced Computer Science and Applications(IJACSA), 4(6), 2013. http://dx.doi.org/10.14569/IJACSA.2013.040608

@article{Passini2013,
title = {A Strategy for Training Set Selection in Text Classification Problems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.040608},
url = {http://dx.doi.org/10.14569/IJACSA.2013.040608},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {6},
author = {Maria Luiza C. Passini and Katiusca B. Estébanez and Grazziela P. Figueredo and Nelson F. F. Ebecken}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org