The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2014.051011
PDF

Credible Fuzzy Classification based Technique on Self Organized Features Maps and FRANT IC-RL

Author 1: Mona Gamal
Author 2: Elsayed Radwan
Author 3: Adel M.A. Assiri

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 5 Issue 10, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Handling uncertainty and vagueness in real world becomes a necessity for developing intelligent and efficient systems. Based on the credibility theory, a fuzzy clustering approach that improves the classification accuracy is targeted by this work. This paper introduces a design of an efficient set of fuzzy rules that are inferred by a hybrid model of SOFM (Self Organized Features Maps) and FRANTIC-SRL (Fuzzy Rules from ANT-Inspired Computation – Simultaneous Rule Learning). Self-Organized Features Maps cluster inputs using self-adaption techniques. They are useful in generating fuzzy membership functions for the subsets of the fuzzy variables. The generated fuzzy variables are ranked by means of the credibility measure wherever the weighted average of their confidence level is determined. FRANT IC-SRL builds the fuzzy classification rule set using the ranked credibility variables in a simultaneous process. Moreover, the whole fuzzy system is evaluated based on the credibility value. The details and limitations of the proposed model are illustrated. Also, the experimental results and a comparison with previous techniques in generating fuzzy classification rules from medical data sets are declared.

Keywords: Fuzzy Rule; Classification; Self-Organized Feature Map; Credibility Measure; Ant Colony Optimization

Mona Gamal, Elsayed Radwan and Adel M.A. Assiri, “Credible Fuzzy Classification based Technique on Self Organized Features Maps and FRANT IC-RL” International Journal of Advanced Computer Science and Applications(IJACSA), 5(10), 2014. http://dx.doi.org/10.14569/IJACSA.2014.051011

@article{Gamal2014,
title = {Credible Fuzzy Classification based Technique on Self Organized Features Maps and FRANT IC-RL},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2014.051011},
url = {http://dx.doi.org/10.14569/IJACSA.2014.051011},
year = {2014},
publisher = {The Science and Information Organization},
volume = {5},
number = {10},
author = {Mona Gamal and Elsayed Radwan and Adel M.A. Assiri}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org