The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2014.051022
PDF

Transfer Learning Method Using Ontology for Heterogeneous Multi-agent Reinforcement Learning

Author 1: Hitoshi Kono
Author 2: Akiya Kamimura
Author 3: Kohji Tomita
Author 4: Yuta Murata
Author 5: Tsuyoshi Suzuki

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 5 Issue 10, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper presents a framework, called the knowledge co-creation framework (KCF), for heterogeneous multiagent robot systems that use a transfer learning method. A multiagent robot system (MARS) that utilizes reinforcement learning and a transfer learning method has recently been studied in realworld situations. In MARS, autonomous agents obtain behavior autonomously through multi-agent reinforcement learning and the transfer learning method enables the reuse of the knowledge of other robots’ behavior, such as for cooperative behavior. Those methods, however, have not been fully and systematically discussed. To address this, KCF leverages the transfer learning method and cloud-computing resources. In prior research, we developed ontology-based inter-task mapping as a core technology for hierarchical transfer learning (HTL) method and investigated its effectiveness in a dynamic multi-agent environment. The HTL method hierarchically abstracts obtained knowledge by ontological methods. Here, we evaluate the effectiveness of HTL with a basic experimental setup that considers two types of ontology: action and state.

Keywords: Transfer learning; Multi-agent reinforcement learning; Multi-agent robot systems

Hitoshi Kono, Akiya Kamimura, Kohji Tomita, Yuta Murata and Tsuyoshi Suzuki, “Transfer Learning Method Using Ontology for Heterogeneous Multi-agent Reinforcement Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 5(10), 2014. http://dx.doi.org/10.14569/IJACSA.2014.051022

@article{Kono2014,
title = {Transfer Learning Method Using Ontology for Heterogeneous Multi-agent Reinforcement Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2014.051022},
url = {http://dx.doi.org/10.14569/IJACSA.2014.051022},
year = {2014},
publisher = {The Science and Information Organization},
volume = {5},
number = {10},
author = {Hitoshi Kono and Akiya Kamimura and Kohji Tomita and Yuta Murata and Tsuyoshi Suzuki}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org