The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2014.050309
PDF

Feasibility of automated detection of HONcode conformity for health-related websites

Author 1: Célia Boyer
Author 2: Ljiljana Dolamic

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 5 Issue 3, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, authors evaluate machine learning algorithms to detect the trustworthiness of a website according to HONcode criteria of conduct (detailed in paper). To derive a baseline, we evaluated a Naive Bayes algorithm, using single words as features. We compared the baseline algorithm’s performance to that of the same algorithm employing different feature types, and to the SVM algorithm. The results demonstrate that the most basic configuration (Naive Bayes, single word) could produce a 0.94 precision for “easy” HON criteria such as “Date”. Conversely, for more difficult HON criteria “Justifiability”, we obtained precision of 0.68 by adjusting the system parameters such as algorithm (SVM) and feature types (W2).

Keywords: internet content quality; health; machine learning

Célia Boyer and Ljiljana Dolamic, “Feasibility of automated detection of HONcode conformity for health-related websites” International Journal of Advanced Computer Science and Applications(IJACSA), 5(3), 2014. http://dx.doi.org/10.14569/IJACSA.2014.050309

@article{Boyer2014,
title = {Feasibility of automated detection of HONcode conformity for health-related websites},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2014.050309},
url = {http://dx.doi.org/10.14569/IJACSA.2014.050309},
year = {2014},
publisher = {The Science and Information Organization},
volume = {5},
number = {3},
author = {Célia Boyer and Ljiljana Dolamic}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org