The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2014.050428
PDF

EEG Mouse:A Machine Learning-Based Brain Computer Interface

Author 1: Mohammad H. Alomari
Author 2: Ayman AbuBaker
Author 3: Aiman Turani
Author 4: Ali M. Baniyounes
Author 5: Adnan Manasreh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 5 Issue 4, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The main idea of the current work is to use a wireless Electroencephalography (EEG) headset as a remote control for the mouse cursor of a personal computer. The proposed system uses EEG signals as a communication link between brains and computers. Signal records obtained from the PhysioNet EEG dataset were analyzed using the Coif lets wavelets and many features were extracted using different amplitude estimators for the wavelet coefficients. The extracted features were inputted into machine learning algorithms to generate the decision rules required for our application. The suggested real time implementation of the system was tested and very good performance was achieved. This system could be helpful for disabled people as they can control computer applications via the imagination of fists and feet movements in addition to closing eyes for a short period of time.

Keywords: EEG; BCI; Data Mining; Machine Learning; SVMs; NNs; DWT; Feature Extraction

Mohammad H. Alomari, Ayman AbuBaker, Aiman Turani, Ali M. Baniyounes and Adnan Manasreh, “EEG Mouse:A Machine Learning-Based Brain Computer Interface” International Journal of Advanced Computer Science and Applications(IJACSA), 5(4), 2014. http://dx.doi.org/10.14569/IJACSA.2014.050428

@article{Alomari2014,
title = {EEG Mouse:A Machine Learning-Based Brain Computer Interface},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2014.050428},
url = {http://dx.doi.org/10.14569/IJACSA.2014.050428},
year = {2014},
publisher = {The Science and Information Organization},
volume = {5},
number = {4},
author = {Mohammad H. Alomari and Ayman AbuBaker and Aiman Turani and Ali M. Baniyounes and Adnan Manasreh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org