The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2014.050521
PDF

Improving Forecasting Accuracy in the Case of Intermittent Demand Forecasting

Author 1: Daisuke Takeyasu
Author 2: Asami Shitara
Author 3: Kazuhiro Takeyasu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 5 Issue 5, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In making forecasting, there are many kinds of data. Stationary time series data are relatively easy to make forecasting but random data are very difficult in its execution for forecasting. Intermittent data are often seen in industries. But it is rather difficult to make forecasting in general. In recent years, the needs for intermittent demand forecasting are increasing because of the constraints of strict Supply Chain Management. How to improve the forecasting accuracy is an important issue. There are many researches made on this. But there are rooms for improvement. In this paper, a new method for cumulative forecasting method is proposed. The data is cumulated and to this cumulated time series, the following method is applied to improve the forecasting accuracy. Trend removing by the combination of linear and 2nd order non-linear function and 3rd order non-linear function is executed to the production data of X-ray image intensifier tube device and Diagnostic X-ray image processing apparatus. The forecasting result is compared with those of the non-cumulative forecasting method. The new method shows that it is useful for the forecasting of intermittent demand data. The effectiveness of this method should be examined in various cases.

Keywords: intermittent demand forecasting; minimum variance; exponential smoothing method; trend

Daisuke Takeyasu, Asami Shitara and Kazuhiro Takeyasu, “Improving Forecasting Accuracy in the Case of Intermittent Demand Forecasting” International Journal of Advanced Computer Science and Applications(IJACSA), 5(5), 2014. http://dx.doi.org/10.14569/IJACSA.2014.050521

@article{Takeyasu2014,
title = {Improving Forecasting Accuracy in the Case of Intermittent Demand Forecasting},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2014.050521},
url = {http://dx.doi.org/10.14569/IJACSA.2014.050521},
year = {2014},
publisher = {The Science and Information Organization},
volume = {5},
number = {5},
author = {Daisuke Takeyasu and Asami Shitara and Kazuhiro Takeyasu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org