The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2016.050501
PDF

Parameter Optimization for Nadaraya-Watson Kernel Regression Method with Small Samples

Author 1: Li Fengping
Author 2: Zhou Yuqing
Author 3: Xue Wei

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 5 Issue 5, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Many current regression algorithms have unsatisfactory prediction accuracy with small samples. To solve this problem, a regression algorithm based on Nadaraya-Watson kernel regression (NWKR) is proposed. The proposed method advocates parameter selection directly from the standard deviation of training data, optimized with leave-one-out cross- validation (LOO-CV). Good generalization performance of the proposed parameter selection is demonstrated empirically using small sample regression problems with Gaussian noise. The results show that proposed parameter optimization method is more robust and accurate than other methods for different noise levels and different sample sizes, and indicate the importance of Vapnik’s e-insensitive loss for regression problems with small samples.

Keywords: small samples regression; Nadaraya-Watson kernel regression; parameter optimization; loss function; cross validation

Li Fengping, Zhou Yuqing and Xue Wei, “Parameter Optimization for Nadaraya-Watson Kernel Regression Method with Small Samples” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 5(5), 2016. http://dx.doi.org/10.14569/IJARAI.2016.050501

@article{Fengping2016,
title = {Parameter Optimization for Nadaraya-Watson Kernel Regression Method with Small Samples},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2016.050501},
url = {http://dx.doi.org/10.14569/IJARAI.2016.050501},
year = {2016},
publisher = {The Science and Information Organization},
volume = {5},
number = {5},
author = {Li Fengping and Zhou Yuqing and Xue Wei}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org