The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2016.050504
PDF

Comparative Study on Cloud Parameter Estimation Among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI with Laser Radar: Lidar as Truth Data

Author 1: Kohei Arai
Author 2: Masanori Sakashita
Author 3: Hiroshi Okumura
Author 4: Shuji Kawakami
Author 5: Kei Shiomi
Author 6: Hirofumi Ohyama

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 5 Issue 5, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A comparative study on cloud parameter estimation among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI is carried out using Laser Radar: Lidar as a truth data. Optical depth, size distribution, as well as cirrus type of clouds are cloud parameters. In particular, cirrus cloud detection is tough issue. 1.38 µm channel is required for its detection. Although MODIS and Landsat-8/OLI have such channel, the other mission instruments, CAI and CALIPSO/CALIOP do not have such channel. As a truth data of cloud parameter, ground based Lidar is used in this comparative study. From the Lidar, backscattered echo signal and depolarization coefficient are obtained as a function of altitude. Therefore, cloud type, vertical profile can be derived from the Lidar data. CALIPSO/CALIOP is satellite based Lidar which allows observation of clouds from space. Although the directions of laser light emissions between CALIPSO/CALIOP and the ground based Lidar are different, their principles are same. Therefore, it is expected that CALIPSO/CALIOP data derived cloud parameters are similar to the ground based Lidar data derived cloud parameters. The experimental results show the aforementioned facts and are useful for improvement of cloud parameter estimation accuracy with several sensor data combinations.

Keywords: Cirrus cloud; GOSAT/CAI; Landsat; LiDAR; Sky view camera; CALIPSO/CALIOP; topogramphic representation of 3D clouds

Kohei Arai, Masanori Sakashita, Hiroshi Okumura, Shuji Kawakami, Kei Shiomi and Hirofumi Ohyama, “Comparative Study on Cloud Parameter Estimation Among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI with Laser Radar: Lidar as Truth Data” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 5(5), 2016. http://dx.doi.org/10.14569/IJARAI.2016.050504

@article{Arai2016,
title = {Comparative Study on Cloud Parameter Estimation Among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI with Laser Radar: Lidar as Truth Data},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2016.050504},
url = {http://dx.doi.org/10.14569/IJARAI.2016.050504},
year = {2016},
publisher = {The Science and Information Organization},
volume = {5},
number = {5},
author = {Kohei Arai and Masanori Sakashita and Hiroshi Okumura and Shuji Kawakami and Kei Shiomi and Hirofumi Ohyama}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org