The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2014.050626
PDF

XCS with an internal action table for non-Markov environments

Author 1: Tomohiro Hayashida
Author 2: Ichiro Nishizaki
Author 3: Keita Moriwake

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 5 Issue 6, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: To cope with sequential decision problems in non- Markov environments, learning classifier systems using the internal register have been proposed. Since, by utilizing the action part of classifiers, these systems control the internal register in the same way as choosing actions to the environment, they do not always work well. In this paper, we develop an effective learning classifier system with two different rule sets for internal and external actions. The first one is used for determining internal actions, that is, rules for controlling the internal register. It provides stable performance by separating control of the internal register from the action part of classifiers, and it is represented by “If [external state] & [internal state] then [internal action],” and we call a set of the first rules the internal action table. The second one is for selecting external actions as in the classical classifier system, but its structure is slightly different with the classical one; it is represented by “If [external state] & [internal state] & [internal action] then [external action].” In the proposed system, aliased states in the environment are identified by observing payoffs of a classifier and referring to the internal action table. To demonstrate the efficiency and effectiveness of the proposed system, we apply it to woods environments which are used in the related works, and compare the performance of it to those of the existing classifier systems.

Keywords: Learning classifier systems; Non-Markov environments; XCS; Internal register.

Tomohiro Hayashida, Ichiro Nishizaki and Keita Moriwake, “XCS with an internal action table for non-Markov environments” International Journal of Advanced Computer Science and Applications(IJACSA), 5(6), 2014. http://dx.doi.org/10.14569/IJACSA.2014.050626

@article{Hayashida2014,
title = {XCS with an internal action table for non-Markov environments},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2014.050626},
url = {http://dx.doi.org/10.14569/IJACSA.2014.050626},
year = {2014},
publisher = {The Science and Information Organization},
volume = {5},
number = {6},
author = {Tomohiro Hayashida and Ichiro Nishizaki and Keita Moriwake}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org