The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Measuring Term Specificity Information for Assessing Sentiment Orientation of Documents in a Bayesian Learning Framework

Author 1: D. Cai

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2014.050829

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 5 Issue 8, 2014.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The assessment of document sentiment orientation using term specificity information is advocated in this study. An interpretation of the mathematical meaning of term specificity information is given based on Shannon’s entropy. A general form of a specificity measure is introduced in terms of the interpretation. Sentiment classification using the specificity measures is proposed within a Bayesian learning framework, and some potential problems are clarified and solutions are suggested when the specificity measures are applied to estimation of posterior probabilities for the NB classifier. A novel method is proposed which allows each document to have multiple representations, each of which corresponds to a sentiment class. Our experimental results show, while both the proposed method and IR techniques can produce high performance for sentiment classification, that our method outperforms the IR techniques.

Keywords: term specificity information; specificity measure; naive Bayes classifier; sentiment classification.

D. Cai, “Measuring Term Specificity Information for Assessing Sentiment Orientation of Documents in a Bayesian Learning Framework” International Journal of Advanced Computer Science and Applications(IJACSA), 5(8), 2014. http://dx.doi.org/10.14569/IJACSA.2014.050829

@article{Cai2014,
title = {Measuring Term Specificity Information for Assessing Sentiment Orientation of Documents in a Bayesian Learning Framework},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2014.050829},
url = {http://dx.doi.org/10.14569/IJACSA.2014.050829},
year = {2014},
publisher = {The Science and Information Organization},
volume = {5},
number = {8},
author = {D. Cai}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org