The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2016.050904
PDF

Prediction of Employee Turnover in Organizations using Machine Learning Algorithms

Author 1: Rohit Punnoose
Author 2: Pankaj Ajit

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 5 Issue 9, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Employee turnover has been identified as a key issue for organizations because of its adverse impact on work place productivity and long term growth strategies. To solve this problem, organizations use machine learning techniques to predict employee turnover. Accurate predictions enable organizations to take action for retention or succession planning of employees. However, the data for this modeling problem comes from HR Information Systems (HRIS); these are typically under-funded compared to the Information Systems of other domains in the organization which are directly related to its priorities. This leads to the prevalence of noise in the data that renders predictive models prone to over-fitting and hence inaccurate. This is the key challenge that is the focus of this paper, and one that has not been addressed historically. The novel contribution of this paper is to explore the application of Extreme Gradient Boosting (XGBoost) technique which is more robust because of its regularization formulation. Data from the HRIS of a global retailer is used to compare XGBoost against six historically used supervised classifiers and demonstrate its significantly higher accuracy for predicting employee turnover.

Keywords: turnover prediction; machine learning; extreme gradient boosting; supervised classification; regularization

Rohit Punnoose and Pankaj Ajit, “Prediction of Employee Turnover in Organizations using Machine Learning Algorithms” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 5(9), 2016. http://dx.doi.org/10.14569/IJARAI.2016.050904

@article{Punnoose2016,
title = {Prediction of Employee Turnover in Organizations using Machine Learning Algorithms},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2016.050904},
url = {http://dx.doi.org/10.14569/IJARAI.2016.050904},
year = {2016},
publisher = {The Science and Information Organization},
volume = {5},
number = {9},
author = {Rohit Punnoose and Pankaj Ajit}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org