The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2015.061109
PDF

Handwriting Word Recognition Based on SVM Classifier

Author 1: Mustafa S. Kadhm
Author 2: Asst. Prof. Dr. Alia Karim Abdul Hassan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 11, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: this paper proposed a new architecture for handwriting word recognition system Based on Support Vector Machine SVM Classifier. The proposed work depends on the handwriting word level, and it does not need for character segmentation stage. An Arabic handwriting dataset AHDB, dataset used for train and test the proposed system. Besides, the system achieved the best recognition accuracy 96.317% based on several feature extraction methods and SVM classifier. Experimental results show that the polynomial kernel of SVM is convergent and more accurate for recognition than other SVM kernels.

Keywords: Arabic Text; Preprocessing; Feature Extraction; SVM

Mustafa S. Kadhm and Asst. Prof. Dr. Alia Karim Abdul Hassan, “Handwriting Word Recognition Based on SVM Classifier” International Journal of Advanced Computer Science and Applications(IJACSA), 6(11), 2015. http://dx.doi.org/10.14569/IJACSA.2015.061109

@article{Kadhm2015,
title = {Handwriting Word Recognition Based on SVM Classifier},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.061109},
url = {http://dx.doi.org/10.14569/IJACSA.2015.061109},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {11},
author = {Mustafa S. Kadhm and Asst. Prof. Dr. Alia Karim Abdul Hassan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org