The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2015.061217

A Disaster Document Classification Technique Using Domain Specific Ontologies

Author 1: Qazi Mudassar Ilyas

PDF

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 12, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Manual data collection and entry is one of the bottlenecks in conventional disaster management information systems. Time is a critical factor in emergency situations and timely data collection and processing may help in saving several lives. An effective disaster management system needs to collect data from World Wide Web automatically. A prerequisite for data collection process is document classification mechanism to classify a particular document into different categories. Ontologies are formal bodies of knowledge used to capture machine understandable semantics of a domain of interest and have been used successfully to support document classification in various domains. This paper presents an ontology-based document classification technique for automatic data collection in a disaster management system. A general ontology of disasters is used that contains the description of several natural and man-made disasters. The proposed technique augments the conventional classification measures with the ontological knowledge to improve the precision of classification. A preliminary implementation of the proposed technique shows promising results with up to 10% overall improvement in precision when compared with conventional classification methods.

Keywords: Disaster Management; Document Classification; Ontology; Supervised Learning; Information Retrieval

Qazi Mudassar Ilyas, “A Disaster Document Classification Technique Using Domain Specific Ontologies” International Journal of Advanced Computer Science and Applications(IJACSA), 6(12), 2015. http://dx.doi.org/10.14569/IJACSA.2015.061217

@article{Ilyas2015,
title = {A Disaster Document Classification Technique Using Domain Specific Ontologies},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.061217},
url = {http://dx.doi.org/10.14569/IJACSA.2015.061217},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {12},
author = {Qazi Mudassar Ilyas}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2024

5-6 September 2024

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org