The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2015.061202
PDF

A Prediction Model for Mild Cognitive Impairment Using Random Forests

Author 1: Haewon Byeon

International Journal of Advanced Computer Science and Applications(ijacsa), Volume 6 Issue 12, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Dementia is a geriatric disease which has emerged as a serious social and economic problem in an aging society and early diagnosis is very important for it. Especially, early diagnosis and early intervention of Mild Cognitive Impairment (MCI) which is the preliminary stage of dementia can reduce the onset rate of dementia. This study developed MCI prediction model for the Korean elderly in local communities and provides a basic material for the prevention of cognitive impairment. The subjects of this study were 3,240 elderly (1,502 males, 1,738 females) in local communities over the age of 65 who participated in the Korean Longitudinal Survey of Aging (close) conducted in 2012. The outcome was defined as having MCI and set as explanatory variables were gender, age, level of education, level of income, marital status, smoking, drinking habits, regular exercise more than once a week, monthly average hours of participation in social activities, subjective health, diabetes and high blood pressure. The random Forests algorithm was used to develop a prediction model and the result was compared with logistic regression model and decision tree model. As the result of this study, significant predictors of MCI were age, gender, level of education, level of income, subjective health, marital status, smoking, drinking, regular exercise and high blood pressure. In addition, Random Forests Model was more accurate than the logistic regression model and decision tree model. Based on these results, it is necessary to build monitoring system which can diagnose MCI at an early stage.

Keywords: random forests; data mining; dementia; mild cognitive impairment; risk factors

Haewon Byeon, “A Prediction Model for Mild Cognitive Impairment Using Random Forests” International Journal of Advanced Computer Science and Applications(ijacsa), 6(12), 2015. http://dx.doi.org/10.14569/IJACSA.2015.061202

@article{Byeon2015,
title = {A Prediction Model for Mild Cognitive Impairment Using Random Forests},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.061202},
url = {http://dx.doi.org/10.14569/IJACSA.2015.061202},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {12},
author = {Haewon Byeon}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org