The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2015.060306
PDF

A Minimum Number of Features with Full-Accuracy Iris Recognition

Author 1: Ibrahim E. Ziedan
Author 2: Mira Magdy Sobhi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 3, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A minimum number of features for 100% iris recognition accuracy is developed in this paper. Such number is based on dividing the unwrapped iris into vertical and horizontal segments for a single iris and only vertical segments for dual-iris recognition. In both cases a simple technique that regards the mean of a segment as a feature is adopted. Algorithms and flowcharts to find the minimum of Euclidean Distance (ED) between a test iris and a matching database (DB) one are discussed. A threshold is selected to discriminate between a genuine acceptance (recognition) and a false acceptance of an imposter. The minimum number of features is found to be 47 for single iris and 52 for dual iris recognition. Comparison with recently-published techniques shows the superiority of the proposed technique regarding accuracy and recognition speed. Results were obtained using the phoenix database (UPOL).

Keywords: Iris recognition; Iris features; Speed of Iris recognition; Features reduction

Ibrahim E. Ziedan and Mira Magdy Sobhi, “A Minimum Number of Features with Full-Accuracy Iris Recognition” International Journal of Advanced Computer Science and Applications(IJACSA), 6(3), 2015. http://dx.doi.org/10.14569/IJACSA.2015.060306

@article{Ziedan2015,
title = {A Minimum Number of Features with Full-Accuracy Iris Recognition},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.060306},
url = {http://dx.doi.org/10.14569/IJACSA.2015.060306},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {3},
author = {Ibrahim E. Ziedan and Mira Magdy Sobhi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org