The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2015.060415
PDF

Knowledge Level Assessment in e-Learning Systems Using Machine Learning and User Activity Analysis

Author 1: Nazeeh Ghatasheh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 4, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electronic Learning has been one of the foremost trends in education so far. Such importance draws the attention to an important shift in the educational paradigm. Due to the complexity of the evolving paradigm, the prospective dynamics of learning require an evolution of knowledge delivery and evaluation. This research work tries to put in hand a futuristic design of an autonomous and intelligent e-Learning system. In which machine learning and user activity analysis play the role of an automatic evaluator for the knowledge level. It is important to assess the knowledge level in order to adapt content presentation and to have more realistic evaluation of online learners. Several classification algorithms are applied to predict the knowledge level of the learners and the corresponding results are reported. Furthermore, this research proposes a modern design of a dynamic learning environment that goes along the most recent trends in e-Learning. The experimental results illustrate an overall performance superiority of a support vector machine model in evaluating the knowledge levels; having 98.6%of correctly classified instances with 0.0069 mean absolute error.

Keywords: Concept Maps; Multi-Class Classification; Machine Learning; Electronic Learning; Activity Analysis

Nazeeh Ghatasheh, “Knowledge Level Assessment in e-Learning Systems Using Machine Learning and User Activity Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 6(4), 2015. http://dx.doi.org/10.14569/IJACSA.2015.060415

@article{Ghatasheh2015,
title = {Knowledge Level Assessment in e-Learning Systems Using Machine Learning and User Activity Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.060415},
url = {http://dx.doi.org/10.14569/IJACSA.2015.060415},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {4},
author = {Nazeeh Ghatasheh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org