The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Robot Path Planning Based on Random Coding Particle Swarm Optimization

Author 1: Kun Su
Author 2: YuJia Wang
Author 3: XinNan Hu

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2015.060408

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 4, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Mobile robot navigation is to find an optimal path to guide the movement of the robot, so path planning is guaranteed to find a feasible optimal path. However, the path planning problem must be solve two problems, i.e., the path must be kept away from obstacles or avoid the collision with obstacles and the length of path should be minimized. In this paper, a path planning algorithm based on random coding particle swarm optimization (RCPSO) algorithm is proposed to get the optimal collision-free path. Dijstra algorithm is applied to search a sub-optimal collision-free path in our algorithm; then the RCPSO algorithm is developed to tackle this optimal path planning problem in order to generate the global optimal path. The crossover operator of genetic algorithm and random coding are introduced into the particle swarm optimization to optimize the location of the sub-optimal path. The experiment results show that the proposed method is effective and feasible compared with different algorithms.

Keywords: robot path planning; Dijsktra algorithm; random coding; particle swarm optimization

Kun Su, YuJia Wang and XinNan Hu, “Robot Path Planning Based on Random Coding Particle Swarm Optimization” International Journal of Advanced Computer Science and Applications(IJACSA), 6(4), 2015. http://dx.doi.org/10.14569/IJACSA.2015.060408

@article{Su2015,
title = {Robot Path Planning Based on Random Coding Particle Swarm Optimization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.060408},
url = {http://dx.doi.org/10.14569/IJACSA.2015.060408},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {4},
author = {Kun Su and YuJia Wang and XinNan Hu}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org